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Abstract

What does utility maximization subject to a budget constraint imply for intertemporal choice under un-
certainty? Assuming consumers face a two period consumption-portfolio problem where asset markets 
are incomplete, we address this question following both the standard local infinitesimal and finite data 
approaches. To focus on the separate roles of time and risk preferences, individuals maximize KPS (Kreps-
Porteus-Selden) preferences. The consumption-portfolio problem is decomposed into a one period portfolio 
problem and a two period certainty consumption-saving problem. We derive demand restrictions which 
are necessary and sufficient, for portfolio choices and certainty intertemporal consumption to have been 
generated by maximization, respectively, of a one period expected utility representation and a certainty 
representation of time preferences. Conditions are provided for recovering the building block time and risk 
preference utilities. For the finite data case, we derive a set of linear inequalities that are necessary and 
sufficient for observations to be consistent with the maximization of KPS utility.
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1. Introduction

The neoclassical certainty model of consumer behavior postulates that a consumer’s demand 
can be described as having been derived from utility maximization subject to a budget constraint. 
One is then naturally led to ask what this model implies about demand behavior. This question 
has been addressed using two quite distinct approaches. The first, typically referred to as inte-
grability, originating in the infinitesimal analysis of Slutsky (1915) and Antonelli (1886), derives 
necessary and sufficient conditions such that a given demand function arises from the maximiza-
tion of utility. The second approach known as “revealed preference”, following the classic work 
of Samuelson (1938), provides necessary and sufficient restrictions on a finite set of demand-
price pairs such that the demand behavior of a consumer is consistent with utility maximization. 
Among many others, Hurwicz and Uzawa (1971), Mas-Colell (1978) and Afriat (1967) have 
provided complete answers to these questions for the case of demand for commodities under 
certainty. While the analysis carries over directly to a static uncertainty setting with complete 
asset markets, the case of incomplete markets is not fully understood. Moreover for the case 
of the intertemporal demand for assets and first period consumption in incomplete markets, the 
answer is far less clear, in particular for the integrability approach. The question of what the hy-
pothesis of utility maximization implies for intertemporal choice under uncertainty has received 
very little attention in the literature. This is surprising given the well-recognized importance of 
understanding the separate roles of risk and time preferences in saving and portfolio decisions.

In this paper we address the question of intertemporal choice where asset markets are incom-
plete utilizing both the integrability and revealed preference approaches. We assume the classic 
two period consumption-portfolio problem, where period 1 consumption is certain and period 
2 consumption is risky. In the first period the consumer chooses a level of period 1 consump-
tion and a portfolio of financial assets, where the market for assets is incomplete. In order to 
distinguish the separate roles of time and risk, we assume that consumers have preferences of 
the form axiomatized by Kreps and Porteus (1978) and Selden (1978) which include two period 
expected utility preferences as a special case. These KPS (Kreps-Porteus-Selden) preferences are 
fully characterized by a representation of time preferences defined over certain periods 1 and 
2 consumption and conditional risk preferences, where the latter are parameterized by period 
1 consumption and are defined over risky period 2 consumption. This separation of time and 
risk preferences is well known and has been widely used in the analysis of saving behavior and 
asset pricing.1 In addition to giving necessary and sufficient conditions such that consumption 
and asset demands are consistent with the maximization of KPS preferences, we also provide 
conditions under which the building block time and risk preference utilities can be recovered 
from the demands.

Our first observation is that, under mild conditions, an agent’s utility maximization problem 
can be decomposed into a two stage problem. First conditional on a given value of period one 
consumption, one solves the single period portfolio problem resulting in optimal second period 

1 For dynamic extensions (i.e., more than two periods) of these preferences such as the widely used Epstein and 
Zin (1989) model, it is not possible in general to achieve a complete separation of time and risk preferences (over 
consumption). See Epstein et al. (2014, p. 2687).
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consumption. The solution is referred to as the conditional asset demand function. Then a sec-
ond stage consumption-saving optimization for optimal first period consumption is solved. It 
will prove convenient to base our demand test for and identification of conditional risk prefer-
ences, on the solution to the conditional asset optimization problem. Then for the existence and 
identification of time preferences we utilize the solution to the second problem.

The solution to the conditional asset demand problem is formally identical to the solution of 
a one period asset choice problem. We argue that when financial markets are incomplete, it is 
generally impossible to extend the Hurwicz and Uzawa (1971) integrability result to the most 
direct case, a utility for assets. But what if preferences are defined over contingent claims and are 
representable by an EU (expected utility) function? Assuming one can vary probabilities as well 
as prices and income, we derive an asset demand test which verifies the existence of a unique EU 
representation that rationalizes the given demand. Moreover, we provide a means for recovering 
the EU function.

The assumption of varying probabilities is different from the traditional Arrow-Debreu set-
ting, where probabilities are assumed to be given and fixed. This key difference enables us to 
define an implicit relationship between probabilities and asset prices from the given asset demand 
functions. It follows from McLennan (1979) that without this assumption the EU preferences 
cannot be uniquely recovered - in this sense it is a necessary condition for our analysis. In reality, 
investor beliefs over asset returns obviously vary over time but it is not clear how they can be 
observed. In laboratory experiments where subjects are given the probabilities they can naturally 
be varied across observations.

Within the KPS framework, establishing the existence of a well behaved time preference 
utility turns out to be more difficult. One of the challenges is that the second stage consumption-
saving problem can in general have a nonlinear budget constraint. Building on an insight in 
Polemarchakis and Selden (1984), we derive a local demand test for the existence of a unique 
(up to an increasing transformation) representation of time preferences that can rationalize the 
solution to the second stage consumption-saving problem. A key input into this test is the EU 
function recovered from the conditional asset demands. In addition to integrability results for 
the first and second stage optimizations, we also provide local conditions on demand which are 
necessary and sufficient for it to be derived from a KPS utility function.

Thus, together our theorems extend the integrability results of Hurwicz and Uzawa (1971) and 
Mas-Colell (1978) to the consumption-portfolio problem where asset markets are incomplete for 
the case of KPS preferences. To illustrate the application of our key results, we include a sequence 
of examples in which given demands are shown to satisfy the necessary and sufficient conditions 
for the existence of both a representation of conditional risk preferences and a representation of 
time preferences. Moreover, we recover the specific representations of risk and time preferences 
generating the demands.

We also translate our ideas to a revealed preference setting, with finitely many observations on 
prices, probabilities and asset demands. Kubler (2004) considered a special case of this setting 
but was unable to give a tractable characterization of necessary and sufficient conditions. In this 
setting we provide a set of linear inequalities that are necessary and sufficient for a finite set of 
observations to be consistent with the maximization of KPS utility. To obtain this result, we as-
sume that in addition to observing the utility maximizing choices, one also observes the certainty 
equivalents of risky consumption corresponding to these choices. In the recent literature on con-
tingent claim demand tests of different preference models (e.g., Choi et al., 2007), it is standard to 
assume that prices, income and probabilities are known. Also, the required certainty equivalents 
could in principle be solicited from the experimental subjects. Our revealed preference extension 
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would seem to facilitate addressing the interesting questions of whether (i) consumer demands 
are consistent with KPS preferences, (ii) time and risk preferences are independent and (iii) they 
perform better in complete versus incomplete markets.

The desire to separately identify risk and time preferences from given consumption and asset 
demands is a clear motivation for why we have chosen to focus on the consumption-portfolio 
optimization rather than just the portfolio problem. With regard to potential applications of the 
theoretical results in this paper, recent laboratory experimental work investigating the separate 
roles of risk and time preferences would seem quite complementary. Numerous studies have been 
conducted in this area (see, for example, Andreoni and Sprenger, 2012, 2015; Wölbert and Riedl, 
2013; Cheung, 2015; Epper and Fehr-Duda, 2015 and Miao and Zhong, 2015).

For the case of revealed preferences, Varian (1983) shows how to extend Afriat’s (1967) anal-
ysis to a portfolio problem with possibly incomplete asset markets. Our contribution is to extend 
his analysis to an intertemporal setting. There is a substantial literature on the question whether 
EU preferences can be uniquely identified from asset demand and how to recover utility (see e.g., 
Dybvig and Polemarchakis, 1981; Polemarchakis and Selden, 1984). Clearly, if one can recover 
a candidate EU function, one can plug it into the first order conditions for optimal demand and 
test whether demand is generated by this utility. There are several limitations to this approach. 
First, although it allows one to uniquely identify a candidate EU representation, it may be diffi-
cult to analytically derive the utility function. Second, McLennan (1979) shows that locally the 
same incomplete market asset demand can be generated by two different EU representations. To 
overcome this problem, one must assume the existence of a risk free asset and apply the approach 
globally or assume that the utility function is analytic. Our approach proves existence of a unique 
EU function without having to recover the utility and avoids the requirement to have a risk free 
asset and apply the approach globally as well as the assumption that utility is analytic. Kubler 
and Polemarchakis (2017) examine a complementary problem. They also work in a two period 
setting with incomplete markets but assume the existence of stationary expected utility, and di-
rectly recover the NM (von Neuman-Morgenstern) index. The main contribution of that paper 
is to give conditions that allow for an identification of (fixed) beliefs from the observed asset 
demand as a function of asset prices. We consider the opposite problem: beliefs are observable 
(objective) and vary but no assumption is made on preferences. We give necessary and sufficient 
conditions for the existence of a KPS representation and show that the utility function can be 
recovered from observations on prices, probabilities and demands.

The rest of the paper is organized as follows. In the next section, we introduce the setup 
and define notation. In Section 3, we provide several examples illustrating a number of specific 
obstacles in an incomplete market setting to directly solving the integrability problem for a utility 
over assets rather than contingent claims. In Section 4, we first consider integrability for the 
case where conditional risk preferences are representable by expected utility and then provide 
necessary and sufficient conditions for the existence of a utility representing time preferences 
over certain periods 1 and 2 consumption and a means for identifying the utility. Section 5 gives a 
revealed preference test to verify that discrete data is consistent with a KPS representation which 
can be conducted in a lab setting. Proofs are given in Appendix A and supporting materials are 
provided in Supplemental Appendix B.

2. Preliminaries

In the first subsection, we describe the consumption-portfolio setting and then review the 
structure and properties of KPS preferences. One of the motivations for assuming these prefer-
www.manaraa.com
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ences is to be able to identify, based on consumption and asset demands, the specific underlying 
risk and time preferences. To achieve this, it will prove useful to utilize a two stage process for 
solving the consumption-portfolio optimization, which is discussed in the second subsection.

2.1. Notation and definitions

At the beginning of period 1, the consumer chooses a level of certain first period consumption 
c1 and a set of asset holdings, where the returns on the latter fund consumption in period 2. The 
asset market can be incomplete with J ≥ 2 independent assets and S states, where J ≤ S. Denote 
the payoff for asset j (j ∈ {1, ..., J }) in state s (s ∈ {1, ..., S}) by ξjs ≥ 0, where for each j , there 
exists at least one s ∈ {1, ..., S} such that ξjs > 0. The quantities of assets and contingent claims 
are denoted, respectively, by zj and c2s , with z and c2 being the corresponding vectors. Random 
period 2 consumption can thus be expressed as

c2s =
J∑

j=1

zj ξjs (s = 1, ..., S) . (1)

The prices of period 1 consumption, c1 and asset zj are given by, respectively, p1 and qj . The 
vector of state probabilities is denoted π ∈ �S−1++ = {π ∈ RS++| ∑S

s=1 πs = 1}. Both asset prices 
and state probabilities are allowed to vary. We assume throughout that the payoffs of the J assets 
across states, (ξj1, . . . , ξjS), are linearly independent for all j = 1, . . . , J . Asset prices preclude 
arbitrage in that there are p2s > 0, s = 1, . . . , S such that

qj =
S∑

s=1

ξjsp2s (j = 1,2, ..., J ) . (2)

The consumer’s preferences over the consumption vectors (c1, c21, ..., c2S) are assumed to be 
representable by the KPS form2

U (c1, c21, ..., c2S) = U

(
c1,V

−1
c1

(
S∑

s=1

πsVc1(c2s)

))
= U(c1, ĉ2), (3)

where 
∑S

s=1 πsVc1(c2s) is the standard single period state independent EU representation over 
risky period 2 consumption, Vc1 is the NM index conditional on period 1 consumption.3 The 
NM index Vc1 is strictly increasing in c2s and twice continuously differentiable in c1 and c2s . 
The assumption that Vc1 is strictly increasing in c2s ensures the existence of a unique certainty 
equivalent ĉ2. The time preference representation U is twice continuously differentiable and 
strictly quasiconcave and Vc1 is concave in c2 for each c1-value. The second argument of U in 
(3) is the period 2 certainty equivalent associated with (c21, ..., c2S)

ĉ2 = V −1
c1

(
S∑

s=1

πsVc1(c2s)

)
.

2 The particular form (3) is axiomatized in Selden (1978). As is well-known, this utility is equivalent to the two period 
Kreps and Porteus (1978) form if one embeds V −1

c1 in the outside aggregator.
3 In general, the representation (3) is not linear in probabilities and diverges from the two period EU ∑S πsW(c1, c2s ).
www.manaraa.com
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If Vc1 takes the form

Vc1 (·) = a (c1)V (·) + b (c1) ,

where a (c1) > 0 and b (c1) are functions of c1 and V is independent of c1, it will be said to 
exhibit RPI (risk preference independence). Otherwise, it will be said to exhibit RPD (risk pref-
erence dependence).4 Clearly for the case of an RPD conditional NM index, ̂c2 will depend not 
only on (c21, ..., c2S) but also on c1. Thus, the KPS utility (3) is defined by the indices (U, {Vc1}).

Given the dual contingent claim structure assumed, the consumer’s consumption-portfolio 
optimization problem is given by

max
c1,z

U (c1, ĉ2) (4)

S.T . ĉ2 (c2;π) = V −1
c1

(
S∑

s=1

πsVc1 (c2s)

)
,

c2s =
J∑

j=1

ξjszj and p1c1 +
J∑

j=1

qj zj = I. (5)

Since these assumptions do not imply that the first order conditions for the problem (4) - (5) are 
sufficient for a unique maximum, we require the KPS utility (3) to be strictly quasiconcave in 
(c1, c21, ..., c2S).

The solution to (4) - (5) can be expressed as the period 1 consumption c1(p1, q, π, I ) and as-
set demand function z(p1, q, π, I ). It will be understood that when we write π1, ..., πS , one can 
always replace πS by 1 − ∑S−1

s=1 πs . Consistent with the above simplex normalization of proba-
bilities, corresponding to any change in πs (s �= S) it will be understood that πS will have a com-
pensating change. Given this convention, ∂c1/∂πs and ∂z/∂πs are defined for s = 1, ..., S − 1.

Throughout most of this paper, we assume that one is given the functions c1(p1, q, π, I )

and z(p1, q, π, I ) on an open set of period one consumption price, no-arbitrage asset prices, 
probabilities and incomes. These sets are denoted respectively by P ⊂ R++, Q ⊂ RJ++, � ⊂
�S−1++ and I ⊂R++. We assume that the function is given on the product on these sets, P ×Q ×
� × I which we assume to be topologically connected. This assumption is not needed for our 
tests, but clearly one cannot uniquely (up to monotone or positive affine transformation) recover 
utility functions which are defined on different regions of the consumption space.

The key question we focus on is whether a given vector of demands (c1, z) is generated as 
the result of the optimization (4) - (5) and hence can be said to be rationalized by KPS prefer-
ences. As mentioned in the introduction, it is crucial to assume that variations of probabilities are 
observable on an open set.

2.2. Two stage optimization

The optimization (4) - (5) can be decomposed into a two stage problem.5 First conditional on 
a given value of c1, one solves the single period problem

4 One familiar example of such a dependence is the internal habit formation formulation in Constantinides (1990).
5 A necessary and sufficient condition for being able to perform this decomposition is given in Remark 8, Ap-

pendix A.2.
www.manaraa.com
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max
z

S∑
s=1

πsVc1 (c2s) =
S∑

s=1

πsVc1

(
ξ s · z

)
S.T .

J∑
j=1

qj zj = I − p1c1 = I2, (6)

where I2 denotes period 2 residual income. The solution to (6) is referred to as the conditional 
asset demand function and denoted by z(q,π, I2| c1). Then the second stage optimization

max
c1

U(c1, ĉ2 (z(q,π , I2| c1))) (7)

is solved. It should be noted that in this formulation ̂c2 is a function of z and c1. The resulting opti-
mal period 1 consumption demand c1(p1, q, π, I ) can be substituted into z(q,π, I2| c1) yielding 
the unconditional asset demand z(p1, q, π, I ). It will prove convenient to base our demand test 
for and identification of conditional risk preferences, corresponding to 

∑S
s=1 πsVc1(c2s), on the 

solution to the conditional asset optimization problem (6). Then for the existence and identifica-
tion of time preferences represented by U(c1, c2), we utilize the solution to (7).

For the overall optimization, suppose that U in (3) is quasiconcave in (c1, c21, ..., c2S), then a 
solution to (6) - (7) exists, but the U implicitly defined by U (c1, c2) = U (c1, c21, ..., c2S) with 
c21 = ... = c2S , need not be strictly increasing and quasiconcave, as is required for a suitable 
representation of time preferences. (See Example B.1 Supplemental Appendix B.1.) For the two 
stage optimization, it is standard to assume that U is quasiconcave. However, this is not sufficient 
to ensure that the solution to the first order condition also satisfies the second order condition. 
(See Example B.2 in Supplemental Appendix B.1.)

Since for our primary integrability results, we assume the two stage formulation, we need an 
assumption on the certainty equivalent to guarantee overall strict quasiconcavity.

Assumption 1. The period two certainty equivalent

ĉ2 = V −1
c1

S∑
s=1

πsVc1

(
ξ s · z (q,π, I2| c1)

)
is weakly concave in c1.

Proposition 1. Suppose J ≥ 2 and S ≥ J and one is given twice continuously differentiable 
demand functions c1(p1, q, π, I ) and z(p1, q, π, I ). Further assume that the conditional asset 
demand function z (q,π, I2| c1) is rationalizable by an EU function with a twice continuously 
differentiable NM index Vc1 and inverse conditional demand exists. Moreover, there exists a 
unique twice continuously differentiable, strictly increasing, strictly quasiconcave representation 
of time preferences U (c1, c2) rationalizing the certainty demand. Then (c1, z) can be rational-
ized by a KPS utility (3) if Assumption 1 holds.

Remark 1. As proved in Selden (1980, Corollary), if Vc1 is a member of the HARA (hyperbolic 
absolute risk aversion) class, then ̂c2 is a linear function of c1 and Proposition 1 is automatically 
satisfied.

3. Motivating examples

The most natural and direct way to solve the integrability problem would be to prove the 
existence of a rationalizing utility defined over period 1 consumption and assets rather than period 
1 consumption and contingent claims, for instance, using Hurwicz and Uzawa (1971). However, 
www.manaraa.com
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even if one could prove the existence of an increasing and quasiconcave utility over assets, there 
is no guarantee that this would imply the existence of an increasing and quasiconcave utility 
over consumption. This difficulty is illustrated by the following simple example based on the 
consumption-portfolio problem (4) - (5). The Slutsky symmetry and negative semi-definiteness 
conditions necessary and sufficient for the existence of a utility over assets are satisfied, but the 
induced preferences over contingent claims are not increasing and quasiconcave.

Example 1. Assume three states with a risk free asset, a risky asset, asset payoffs

ξ11 = 1, ξ12 = 1, ξ13 = 1, ξ21 = 2, ξ22 = 0, ξ23 = 1

2

and probabilities (π1,π2,π3). Suppose demand takes the following form

c1 (p1,q, I ) = I

3p1
, z1 (p1,q, I ) = 2 (π1ξ11 + π2ξ12 + π3ξ13) I

3 (π1 (ξ11 + ξ21) + π2 (ξ12 + ξ22) + π3 (ξ13 + ξ23)) q1

and

z2 (p1,q, I ) = 2 (π1ξ21 + π2ξ22 + π3ξ23) I

3 (π1 (ξ11 + ξ21) + π2 (ξ12 + ξ22) + π3 (ξ13 + ξ23)) q2
.

It can be verified that the conditional asset demands are given by

z1 (q, I2| c1) = (π1ξ11 + π2ξ12 + π3ξ13) I2

(π1 (ξ11 + ξ21) + π2 (ξ12 + ξ22) + π3 (ξ13 + ξ23)) q1

and

z2 (q, I2| c1) = (π1ξ21 + π2ξ22 + π3ξ23) I2

(π1 (ξ11 + ξ21) + π2 (ξ12 + ξ22) + π3 (ξ13 + ξ23)) q1
.

These demands satisfy Slutsky symmetry and negative semidefiniteness conditions where the 
former holds automatically since there are only two assets. Applying the Hurwicz and Uzawa
(1971) recovery process yields the familiar Cobb-Douglas form defined over assets,

Vc1(z1, z2) = (π1ξ11 + π2ξ12 + π3ξ13) ln z1 + (π1ξ21 + π2ξ22 + π3ξ23) ln z2.

This in turn, corresponds to a utility function over the contingent claim domain 
{
(c21, c22, c23) ∈

R3++
∣∣ c23 = c21

4 + 3c22
4

}
which is given by

Vc1(c21, c22, c23) = ln
c21 − c22

2
+ ln c22.

By the Tietze extension theorem (see e.g., Hazewinkel, 2001), this can be extended to a contin-
uous utility function over the entire contingent claim space. However, it is easy to see that the 
utility is not everywhere increasing in c22.

This example clearly demonstrates that any asset demand test has to work in the contingent 
claim setting since even if one can recover a well defined utility over assets, it may have no 
economic meaning when defined over contingent claims, which are associated with the con-
sumers’ real consumption. However, it is well known that when markets are incomplete one 
www.manaraa.com
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cannot uniquely identify the preferences over contingent claims from demand of assets. The fol-
lowing example which focuses on the conditional asset demand optimization (6) illustrates this 
point.6

Example 2. Consider the following non-EU function representing conditional risk preferences

Vc1 (c21, c22, c23;π1,π2,π3) =
3∑

s=1

πs ln c2s + √
c21 + c22 − 2c23, (8)

where

ξ11 = 1, ξ12 = 0, ξ13 = 1

2
, ξ21 = 0, ξ22 = 1, ξ23 = 1

2
.

Since

c21 + c22 − 2c23 = z1 + z2 − (z1 + z2) = 0,

it is clear that the non-EU function (8) expressed as a function of assets

Vc1 (z1, z2;π1,π2,π3) =
3∑

s=1

πs ln (ξ1sz1 + ξ2sz2)

takes the same form as the conditional EU representation defined over contingent claims

Vc1 (c21, c22, c23;π1,π2,π3) =
3∑

s=1

πs ln c2s .

Therefore in this case, maximizing the non-EU and EU representations results in same condi-
tional asset demand functions.

The examples suggest that when markets are incomplete it is very difficult to derive necessary 
and sufficient conditions for intertemporal demand to be rationalized by a well-behaved utility 
function. Clearly, the Slutsky condition on asset demand is a necessary but not a sufficient con-
dition. The difficulty in deriving sufficient conditions lies in the fact that there are many utility 
functions that rationalize asset demand in incomplete markets and it is generally impossible to 
ensure that one of them is increasing and quasiconcave.7

To address this problem, we note that assuming that a consumer’s preferences are EU goes a 
long way to solve this problem. Although for this example, it is impossible to tell whether the 
true underlying representation of conditional risk preferences is the EU function, one can still 
ask whether the EU function rationalizing the observed asset demand is (i) unique in the class of 
EU functions and (ii) can be recovered from the demands.

6 A similar example is given in Polemarchakis and Selden (1981).
7 For the revealed preference analysis, matters are quite different. It is straightforward to derive the Afriat inequalities 

for this case. We illustrate this in Supplemental Appendix B.2.
www.manaraa.com
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4. Integrability

In this section we solve the integrability problem for KPS preferences by providing conditions 
such that there exists a KPS utility (3) defined by (U, {Vc1}) which rationalizes given demands 
(c1, z), is unique and can be recovered from the demands. Our approach follows the two stage 
consumption-portfolio optimization (6) - (7). Based on the first stage conditional portfolio prob-
lem, we give conditions for the existence and uniqueness of the {Vc1} and a means for recovering 
the NM indices. Then, utilizing the second stage consumption-saving problem, we derive condi-
tions for the existence and uniqueness of U and a means for recovering time preference utility. 
Finally, we provide conditions such that the KPS utility defined by the (U, {Vc1}) obtained does 
indeed rationalize the given demands. A comprehensive example is provided which illustrates 
the application of the tests derived in this section.

4.1. Verifying that conditional asset demands are generated by EU risk preferences

The question of the existence of a rationalizing conditional EU representation can only be 
answered in terms of restrictions on conditional asset demands.8 Since it is more reasonable 
to suppose that one is given unconditional demands for period 1 consumption and assets, it is 
necessary to ensure that a unique twice continuously differentiable conditional asset demand 
function can be derived from the unconditional demand function. Sufficient conditions for this 
derivation are given by Lemma 2 in Appendix A.2. This is a mild technical condition and for 
simplicity it will be assumed to be satisfied throughout this paper.

In order to derive our integrability result for conditional asset demand, it will prove useful 
to consider the inverse demand function which maps asset demand, probabilities and income 
into a supporting price vector. To simplify notation, normalize I2 = 1 and denote the conditional 
inverse demand function by qj (z, π) (j = 1,2, ..., J ). It should be noted that although qj (.)

refers to both the unconditional and conditional inverse demand, they can easily be distinguished, 
respectively, by the inclusion of I for the case of unconditional demand. For the analysis below, 
we require taking the partial derivatives of q(z, π) with respect to probabilities. In Appendix A.2, 
sufficient conditions are given in Lemma 3 for the existences of twice continuously differentiable 
inverse demand. Again this is a mild technical condition that will be assumed to hold throughout 
the paper.

As explained in Section 2 above, conditional demand is assumed to be given in an open and 
topologically connected set of asset prices and probabilities. It follows from Lemma 3 that for 
each π ∈ �, the range of the inverse demand function is an open and connected subset of RJ

and we can define the domain of inverse demand as D ⊂RJ ×�S−1+ , an open and connected set.
In order to derive necessary and sufficient conditions for EU-rationalizability based on inverse 

demand, consider the conditional portfolio optimization problem in (6) - (7). The first order 
conditions for the optimization problem are

S∑
s=1

πsξjsV
′
c1

(c2s) = μqj (j = 1, .., J ), (9)

8 If the unconditional demands can be rationalized by a twice continuously differentiable, strictly increasing and strictly 
quasiconcave utility function, then as argued in Remark 8 in Appendix A.2, one can always consider the two stage 
optimization and hence unique twice continuously differentiable conditional asset demand exists.
www.manaraa.com



F. Kubler et al. / Journal of Economic Theory 185 (2020) 104973 11
where μ is the Lagrange multiplier. It is easy to see that when markets are complete the system 
(9) has a unique solution in πsV

′
c1

(c2s)/μ, s = 1, . . . , S. These are the contingent claim prices, 
p2s . Kubler et al. (2014, Theorem 2) derive simple necessary and sufficient conditions for the 
existence of a rationalizing EU function in complete markets based on the following relation 
between contingent claim demands

c2s = f (c21, ks), (10)

where

ks = πsp21

π1p2s

, (11)

and f is strictly increasing in ks and f (c2s ,1) = c2s for all c2s . The demand restriction (10) is 
referred to as the k-test. Unfortunately when markets are incomplete, (9) has many solutions and 
it is not feasible to determine whether there exists a particular solution that satisfies (10).

However as we next show in Theorem 1 below, it is possible to extend the complete market EU 
asset demand test to incomplete markets if we assume that probabilities can be varied. Indeed the 
three conditions stated in the theorem below comprise a formal analogue to the complete market 
k-test. The method gives us a way to uniquely pin down πsV

′
c1

(c2s)/μ which we denote by ρ2s : 
Assuming that for some j , ξjS − c2Sqj �= 0, this allows us to define for all (z, π) ∈ D,

ρ2S(z,π) =
∑S−1

s=1 πs
∂qj

∂πs

− 1
πS

(ξjS − c2Sqj

I2
)

= −πS

∑S−1
l=1 πl

∂qj

∂πl

ξjS − c2Sqj

(12)

and (assuming ξjs − c2sqj �= 0) for s = 1, . . . , S − 1,

ρ2s(z,π) =
πs

(
∂qj

∂πs
− ∑S−1

l=1 πl
∂qj

∂πl

)
ξjs − c2sqj

. (13)

In the proof of Theorem 1, we show that these are the analogues of contingent claim prices for 
the incomplete market setting.

For two states s and s′, define

Ms,s′(z,π) = πs′ρ2s(z,π)

πsρ2s′(z,π)
. (14)

We have the following theorem.

Theorem 1. Assume J ≥ 2 and S ≥ J and that for some j ∈ {1, ..., J }, ξjs − c2sqj �= 0 (∀s =
1, ..., S). Then conditional asset demand z (q,π, I2| c1) can be rationalized by a unique EU 
representation if and only if the following three conditions hold.

(i) For all (z, π) ∈ D, and all j = 1, . . . , J ,

qj (z,π) =
S∑

s=1

ξjsρ2s(z,π).

(ii) For all (z, π) ∈ D, and all arbitrary vectors ζ ∈ RJ with ξ s · ζ = ξ s′ · ζ = 0, the derivative 
in the direction of these vectors satisfies
www.manaraa.com
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d

dδ
Ms,s′(z + δζ ,π)|δ=0 = 0,

where δ is a scalar.
Moreover, for all (z, π) ∈ D,

DπMs,s′(z,π) = 0.

(iii) For all (z, π), (̃z, ̃π) ∈ D and all s, ̃s, s′, ̃s′ ∈ {1, . . . , S}, if c2s = z · ξ s ≥ c̃2̃s = z̃ · ξ s̃ and 
c2s′ = z · ξ s′ = c̃2̃s′ = z̃ · ξ s̃′ then

Ms,s′(z,π) ≤ Ms̃,s̃′ (̃z, π̃),

where the inequality holds strictly if c2s = z · ξ s > c̃2̃s = z̃ · ξ s̃ .

Furthermore 
{
Vc1

}
can be uniquely recovered up to a positive affine transformation on the 

intervals of consumption values demanded in states s = 1, . . . , S by integrating Ms,s′(z + δζ , π)

with respect to δ for ζ ∈ RJ where ζ · ξs′ = 0 and ζ · ξ s > 0. In this case,

Vc1(c2s) = Vc1

(
ξ s · (z + δζ )

) =
∫
δ

Ms,s′(z + δζ ,π)dδ.

One cannot directly integrate with respect to c2s , since Ms,s′(z, π) is a function of probabili-
ties and asset demands instead of (c2s , c2s′). Define the marginal rate of substitution between c2s

and c2s′ as MRSss′ . If conditional asset demands are EU representable, we have

Ms,s′(z,π) = πs′

πs

MRSss′ = V ′
c1

(c2s)

V ′
c1

(c2s′)
,

which is independent of probabilities. Here we choose a vector satisfying ζ · ξ s′ = 0 and ζ · ξ s >

0. Since c2s = z ·ξ s , when integrating Ms,s′(z +δζ , π) with respect to δ, we effectively integrate 
for c2s .

As argued in the proof of the theorem, Condition (i) follows from the first order condition for 
optimality. Condition (ii) follows because utility is assumed to be separable across states and the 
NM index does not depend on probabilities. Condition (iii) guarantees state independence and 
concavity of utility.

Remark 2. To see more clearly the connection between Theorem 1 Conditions (i) - (iii) and the 
k-test (10), set s = 1 in (14) yielding

M1s′(z,π) = πs′ρ21(z,π)

π1ρ2s′(z,π)
= ks′ . (15)

Condition (ii) in Theorem 1 guarantees that M1s′(z, π) is a function of only c21 and c2s′ and 
Condition (iii) ensures that this function is strictly decreasing in c21 and strictly increasing in 
c2s′ . By the Implicit Function Theorem, there exists a function f such that

c2s′ = f (c21, ks′) .

Based on Condition (iii), it is easy to verify that f (c21, ks′) is strictly increasing in ks′ and 
f (c21, 1) = c21 for all c21. Therefore, the result in Theorem 1 converges to the complete market 
EU test in Theorem 2 of Kubler et al. (2014).
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Remark 3. If there is a risk free asset and demand can be observed globally, then the process to 
recover the candidate Vc1 can be significantly simplified. Following Dybvig and Polemarchakis
(1981), without loss of generality assume asset 1 is risk free. Then one can recover the candidate {
Vc1

}
if the following inverse demand is known

q(z = (z,0, . . . ,0),π , I2) ∈ Q for some z.

This recovery process rests crucially on the assumptions that (i) an EU representation exists and 
(ii) one can observe demand and prices where it is optimal to only demand the risk free asset.9

Remark 4. McLennan (1979) provides an example in which asset demands can be rationalized 
by two EU representations with NM indices that differ by more than an affine transformation 
(also see Dybvig and Polemarchakis, 1981, p. 165). It should be emphasized that one of the NM 
indices depend on probabilities. If, as McLennan (1979) assumes, probabilities are fixed, both 
representations can be viewed as standard EU functions. However because we allow probabilities 
to vary, a representation which takes the EU form but with a probability dependent NM index 
cannot rationalize the given demand.10 Thus if there is a probability dependent NM index and a 
probability independent NM index to rationalize the demand for fixed probabilities, we will only 
recover the probability independent one based on Theorem 1.

Next we apply the incomplete demand test associated with Conditions (i) - (iii) in Theorem 1
for demand to have been generated by the maximization of an EU function. Given that the as-
set demand function passes the incomplete market EU test, a unique EU representation exists 
and integration is shown to produce the corresponding NM index Vc1 (up to a positive affine 
transformation).

Example 3. Assume three states and two assets where the payoffs are given by11

ξ11 = 1, ξ12 = 0, ξ13 = 1

2
, ξ21 = 0, ξ22 = 1, ξ23 = 1

2
. (16)

The period 1 consumption and unconditional asset demands are respectively given by12,13

9 It should be noted that Green et al. (1979) propose another approach for recovering Vc1 when there is no risk free 
asset and the analysis is local. This is based on the strong assumption that Vc1 is analytic in the nonnegative domain.
10 This is discussed at length in Kubler et al. (2017).
11 For the assumed payoffs, there exists an effective risk free asset, which corresponds to a portfolio of assets z satisfying 
the following condition of having the same payoff in each state

J∑
j=1

zj ξjs = 1 for all s.

However the effective risk free asset is not used in this example.
12 It may strike the reader as surprising that asset demand is independent of income I . This will be clarified in Example 4
below. Nevertheless, in Supplemental Appendix B.3 the associated conditional asset demand is shown to depend on 
period 2 income I2 before normalization.
13 It should be noted that the complete market unconditional demands generated by the same rationalizing utility derived 
at the end of this example, are considerably simpler than (17) - (19). The considerable increase in complexity of the 
demand functions is a common consequence of incomplete markets.
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c1 = I

p1
− 1

p1

⎛⎝ 1
p1

(
π1(1−1/B)

q1−q2

)π1
(

π2(B−1)
q1−q2

)π2

×
(

π3(1−1/B)
2(q2−q1/B)

)π3

⎞⎠− 1
2

, (17)

z1 = π1 (1 − 1/B)

q1 − q2

⎛⎝ 1
p1

(
π1(1−1/B)

q1−q2

)π1
(

π2(B−1)
q1−q2

)π2

×
(

π3(1−1/B)
2(q2−q1/B)

)π3

⎞⎠− 1
2

(18)

and

z2 = π2 (B − 1)

q1 − q2

⎛⎝ 1
p1

(
π1(1−1/B)

q1−q2

)π1
(

π2(B−1)
q1−q2

)π2

×
(

π3(1−1/B)
2(q2−q1/B)

)π3

⎞⎠− 1
2

, (19)

where

A =
√

((1 − π1) q1 − (1 − π2) q2)
2 + 4π1π2q1q2

and

B = π1q1 ((1 − π1) q1 − (1 + π2) q2 + A)

π2q2 ((1 + π1) q1 − (1 − π2) q2 − A)
.

Given that the unconditional demands satisfy the conditions in Lemma 2, and the conditions in 
Lemma 3 are also satisfied, one can first derive unique conditional asset demand functions and 
then obtain the following inverse conditional demands (with the normalization I2 = 1)

q1 = (1 − π2) z1 + π1z2

(z1 + z2) z1
and q2 = (1 − π1) z2 + π2z1

(z1 + z2) z2
. (20)

Applying the approach outlined in Theorem 1 and its proof, it first can be verified that

∂q1

∂π1
= z2

(z1 + z2) z1
and

∂q1

∂π2
= − 1

z1 + z2

Noticing that

c21 = z1, c22 = z2 and c23 = 1

2
(z1 + z2) ,

we have

ρ21(z,π) =
π1

(
∂q1
∂π1

− ∑2
l=1 πl

∂q1
∂πl

)
ξ11 − c21q1

= π1 ((1 − π1) z2 + π2z1)

(1 − q1z1) (z1 + z2) z1
,

and

ρ22(z,π) =
π2

(
∂q1
∂π2

− ∑2
l=1 πl

∂q1
∂πl

)
ξ12 − c22q1

= π2 (π1z2 + (1 − π2) z1)

q1z2 (z1 + z2) z1
.

It can be verified that

qj (z,π) =
S∑

ξjsπsρ2s(z,π)
www.manaraa.com
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and hence Condition (i) in Theorem 1 is satisfied. Next we verify Condition (ii). Inserting the 
inverse demands (20) into the following yields

M12(z,π) = π2

π1

ρ21(z,π)

ρ22(z,π)
= ((1 − π1) z2 + π2z1) q1z2

(π1z2 + (1 − π2) z1) (1 − q1z1)
= z2

z1
.

Next assume ζ ∈R2 satisfying

ζ1ξ11 + ζ2ξ21 = 0 and ζ1ξ12 + ζ2ξ22 = 0.

It follows that ζ = (0,0) implies that

d

dδ
M12(z + δζ ,π)|δ=0 = 0.

Clearly

DπM12(z,π) = 0.

Verifying that the same conclusion holds for Ms,s′(z, π) with other s and s′, Condition (ii) is 
satisfied. Finally, it can be verified that

M12(z,π) = c22

c21
and M23(z,π) = c23

c22
.

Therefore, if c21 ≥ c̃22 and c22 = c̃23, then for any π̃ ∈ �,

M12(̃z,π) ≤M23(̃z, π̃),

with the strict inequality if and only if c21 > c̃22. Verifying that the same conclusion holds for 
Ms,s′(z, π) with other s and s′, Condition (iii) is satisfied.

To see the connection to the complete market k-test (10), notice that

ks = π2sρ21

π21ρ2s

=M1s(z,π) = c2s

c21
,

implying that c2s = f (c21, ks) = c21ks .
Given that a Vc1 exists, one can in fact recover the form that rationalizes the given conditional 

asset demands. Following the logic in the discussion after Theorem 1, define the dummy variable 
c2s = ξ s · (z + δζ ). Then to identify Vc1 , taking ζ = (ζ1,0), we have

Vc1(c2s) =
∫
δ

Ms,s′(z + δζ ,π)dδ =
∫
δ

z2

z1 + ζ1δ
dδ = z2

ζ1
ln (ξ11 (z1 + ζ1δ)) ,

which is defined up to a positive affine transformation. (See Supplemental Appendix B.3 for 
supporting calculations.)

4.2. Verifying certainty consumption demands generated by ordinal representation of time 
preferences

In the prior subsection, Theorem 1 provides necessary and sufficient conditions such that for 
each c1-value asset demands z are generated by the maximization of an EU representation where 
each Vc1 is increasing and strictly concave. In order to go further and show that the given (c1, z)
were generated by the maximization of KPS utility (3), we have to show that (i) there exists a 
well behaved representation U of time preferences and (ii) the collection (U, {Vc }) define a KPS 
www.manaraa.com
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utility that rationalizes the given unconditional demands. Several obstacles need to be overcome 
in order to demonstrate that (i) and (ii) are satisfied.

The main obstacle lies in the fact that the function U(., .) is defined over first period consump-
tion and the certainty equivalent of risky second period consumption. Unfortunately, this cannot 
be observed locally – given the demand function at a price and a small open neighborhood around 
that price does not pin down the certainty equivalent. Theorem 1 allows us to uniquely recover 
the risk preference {Vc1} locally for the consumption values demanded - this generally does not 
suffice to determine the certainty equivalent since the certainty equivalent may lie outside the 
domain of the locally defined {Vc1}.

It remains an open question to derive local conditions on demand. However it is clear that if 
we want to recover time preference utility U , we need to assume that risky asset demand is given 
on a large enough set of prices so that the certainty equivalent, ̂c2 can be uniquely recovered from 
conditional demand. In the following we make this assumption.

As in Subsection 4.1 above it turns out to be useful to work with inverse demand. We assume 
in the following that the conditions in Lemma 3 hold and we are given inverse demand functions 
for prices as a function of choices

p1(c1, z, I,π), q(c1, z, I,π)

on some open an connected set D̂ ⊂R+ ×RJ ×R+ × �. We also assume that we are given

ĉ2(c1, z1, . . . , zJ ,π) = V −1
c1

(
S∑

s=1

πsVc1

(
ξ s · z

))
, (21)

for all c1, z, π with (c1, z, I, π) ∈ D̂ for some I .
The main technical problem for a demand test is then that we cannot define a natural “price” 

for the certainty equivalent ĉ2 – if we could, the natural test would require demand for period 
one consumption and the certainty equivalent to satisfy the Slutsky equation.

Instead, similar to above we derive the marginal rate of substitution MRS = ∂U/∂c1
∂U/∂ĉ2

from 
inverse demand and the certainty equivalent.

For asset j = 1 we can define14

f (c1, z,π) =
(

p1 (c1, z, I,π)

qj (c1, z, I,π)
− ∂ĉ2(c1, z,π)/∂c1

∂ĉ2(c1, z,π)/∂zj

)
∂ĉ2(c1, z,π)

∂zj

. (22)

We show below that if demand is generated by the KPS utility (3), U(c1, ̂c2), then the function 
f only depends on z through ̂c2, does not depend on π and one can express it as a continuously 
differentiable function of (c1, ĉ2) denoted by f̃ (c1, ĉ2). We then have that

f̃ (c1, ĉ2) = MRS = ∂U/∂c1

∂U/∂ĉ2
, (23)

and utility can be recovered through integration.
The following theorem states this formally and provides necessary and sufficient conditions.

Theorem 2. Suppose J ≥ 2 and S ≥ J and one is given twice continuously differentiable in-
verse demand and the certainty equivalent defined on some open and connected set D̂. Further 

14 Since p1 and q are homogeneous of degree 1 in I , the function f does not depend on I . Furthermore, f could have 
been defined using any other asset j > 1, as this turns out to be irrelevant.
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assume that Assumption 1 is satisfied.15 Then there exists a unique twice continuously differen-
tiable, strictly increasing, strictly quasiconcave, probability independent representation of time 
preferences U (c1, c2) : C1 × C2 → R rationalizing the certainty demand (c1, ĉ2) if and only if 
the function f defined in (22) satisfies

(i) For all i, j = 1, . . . , J and all (c1, z, I, π) ∈ D̂
∂f (c1, z,π)/∂zi

∂f (c1, z,π)/∂zj

= ∂ĉ2(c1, z,π)/∂zi

∂ĉ2(c1, z,π)/∂zj

;

(ii) For all (c1, z, I, π) ∈ D̂, f (c1, z, π) > 0 and for all j = 1, . . . , J ,

Dπ

⎛⎝ ∂f (c1,z,π)
∂c1

∂f (c1,z,π)/∂zj

∂ĉ2(c1,z,π)/∂zj

− ∂ĉ2(c1, z,π)

∂c1

⎞⎠ = 0;

(iii) For all (c1, z, I, π) ∈ D̂ and for all j = 1, . . . , J ,

∂f (c1, z,π)/∂zj

∂ĉ2(c1, z,π)/∂zj

>

∂f (c1,z,π)
∂c1

− ∂f (c1,z,π)/∂zj

∂ĉ2(c1,z,π)/∂zj

∂ĉ2(c1,z,π)
∂c1

f (c1, z,π)
. (24)

Furthermore U can be uniquely recovered up to an increasing transformation.

To implement Theorem 2, first note that on the right hand side of eqn. (22), p1 (c1, z)/q1 (c1, z)
can be always calculated when inverse demands exist. Given {Vc1}, ∂ĉ2/∂c1 and ∂ĉ2/∂z1 can be 
also computed. Therefore, one can always calculate the right hand side of eqn. (22) as a function 
of (c1, z). In the above theorem, Condition (i) guarantees that f (c1, z1, ..., zJ ) can be expressed 
as a function of (c1, ĉ2). Condition (ii) ensures that the corresponding utility function is strictly 
increasing and independent of probabilities and Condition (iii) ensures the strict quasiconcav-
ity of the utility. Moreover, if the function f̃ (c1, ĉ2) exists, then as proved in Theorem 2, the 
following partial differential equation

∂U

∂c1
− f̃ (c1, ĉ2)

∂U

∂ĉ2
= 0 (25)

always has a unique solution U (c1, ĉ2), which is defined up to a increasing transformation. 
Note that eqn. (23) defines an indifference curve. As already noted by Samuelson (1950) in 
the two dimensional case, existence and uniqueness of a solution to (25) follows from the fact 
that f̃ is Lipschitz and that therefore the ordinary differential equation dĉ2/dc1 = f̃ together 
with the boundary condition (c◦

1, ̂c
◦
2) has a unique solution describing the indifference curve 

U (c1, ĉ2) = U
(
c◦

1, ĉ
◦
2

)
.

Remark 5. Theorem 2 differs from the classic Hurwicz and Uzawa (1971) integrability result in 
several key ways. A different approach is required due in part to an inability to identify a price for 
ĉ2 since the constraint ̂c2 (c1) referred to in Assumption 1 may not be linear in c1. However since 

15 It should be noted that the constraint ̂c2 (c1) referred to in Assumption 1 is based on optimal conditional asset demand 
z ( q,π , I2| c1). However, the certainty equivalent function ̂c2 (c1, z,π) used in Conditions (i) - (iii) below is based on 
the definition (21) without optimization.
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we only have two goods (c1, ĉ2), the existence of U can be always derived from the MRS anal-
ogous to the conclusion that in the standard linear budget constraint setting Slutsky symmetry is 
always satisfied for two goods. Condition (iii) in Theorem 2 plays the role of negative semidef-
initeness of the Slutsky matrix in Hurwicz and Uzawa (1971) in guaranteeing quasiconcavity 
of U .

Remark 6. If there is a risk free asset (without loss of generality, asset 1) and demand is defined 
globally, then following Polemarchakis and Selden (1984) we can simplify the test in Theorem 2
to the following condition. In this case, the certainty equivalent ̂c2 will have an implicit price p2. 
A well behaved U exists if and only if the Slutsky matrix associated with the demand function 
(c1, c2) with respect to (p1, p2) derived by solving

p2

p1
= q1 (c1, z1, ..., zJ , I )

p1 (c1, z1, ..., zJ , I )

∣∣∣∣
z1=c2,z2=...=zJ =0

(26)

is negative semidefinite and symmetric, and if p2/p1 is probability independent.16

If Assumption 1 does not hold, then in order to guarantee that the KPS representation is well 
defined, we have to recover both 

{
Vc1

}
and U and then directly verify that the KPS utility is 

strictly quasiconcave. Thus we have the following theorem.

Theorem 3. Suppose J ≥ 2 and S ≥ J and one is given twice continuously differentiable inverse 
demand and the certainty equivalent defined on some open and connected set D̂. Further assume 
that Conditions (i), (ii) and (iii) in Theorem 2 are satisfied. Then there exists a unique twice 
continuously differentiable, strictly increasing, strictly quasiconcave, probability independent 
representation of time preferences U (c1, c2) : C1 × C2 → R rationalizing the certainty demand 
if and only if the KPS utility (3) constructed from 

{
Vc1

}
and the solution U to the following 

partial differential equation

∂U

∂c1
− f̃ (c1, ĉ2)

∂U

∂ĉ2
= 0

is strictly quasiconcave.

Based on Theorems 1 and 2, we are guaranteed that a well behaved 
(
U, {Vc1}

)
set exists. 

Moreover, Assumption 1 ensures that the resulting KPS utility (3) satisfies strict quasiconcavity 
and the given demands maximize KPS utility.

Remark 7. Polemarchakis and Selden (1984) assume the existence of a strictly quasiconcave 
U (c1, ĉ2) and discuss how to identify it. Although the identification process of U (c1, ĉ2) pro-
vided by Theorem 2 is similar to that in Polemarchakis and Selden (1984), Theorem 2 also gives 
an analytical test for the existence of a certainty U (c1, ĉ2). The recovery process for U can be 
quite complicated or sometimes not solvable analytically. (See Example B.3 in Supplemental 
Appendix B.4). However Theorem 2 provides tests for the existence of U , which can be readily 
verified without going through the recovery process.

16 Since continuous differentiability implies local Lipschitz continuity, we obtain uniqueness of the representation U
without having to assume Lipschitz continuity as in Mas-Colell (1977).
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Although based on Theorems 1 and 2 a unique U exists, in general it is not possible to deter-
mine its analytic form. However in some cases utilizing Theorem 3, it is possible to recover U. 
To illustrate this, we consider the following extension of Example 3, where we demonstrated the 
existence of a rationalizing EU representation of risk preferences and recovered the specific NM 
index 

{
Vc1

}
. In the following extension, we first calculate the right hand side of eqn. (22). Then 

f (c1, z1, z2) is shown to satisfy Conditions (i), (ii) and (iii) in Theorem 2 implying the existence 
of a U . Finally f̃ (c1, ĉ2) is derived and used following Theorem 3 to solve for the representation 
of certainty time preferences. Thus, we establish the existence of a KPS utility and also identify 
the defining representations 

{
Vc1

}
and U .

Example 4. Deriving the inverse demand functions from the given demands (17) - (19) in Ex-
ample 3, it can be verified that

p1 (c1, z1, z2, I )

q1 (c1, z1, z2, I )
= exp

(
π1 ln z1 + π2 ln z2 + π3 ln

( 1
2z1 + 1

2z2
))

π1
z1

+ π3
z1+z1

.

Since Vc1 (c2) = ln c2 is independent of c1,17

ĉ2 = exp

(
π1 ln z1 + π2 ln z2 + π3 ln

(
1

2
z1 + 1

2
z2

))
, (27)

implying that

∂ĉ2

∂c1
= 0 and

∂ĉ2

∂z1
= exp

(
π1 ln z1 + π2 ln z2 + π3 ln

(
1

2
z1 + 1

2
z2

))(
π1

z1
+ π3

z1 + z1

)
.

Then it follows from eqn. (22) that

f (c1, z1, z2) = exp

(
2

(
π1 ln z1 + π2 ln z2 + π3 ln

(
1

2
z1 + 1

2
z2

)))
.

Next we verify Conditions (i), (ii) and (iii) in Theorem 2. First,

∂f/∂z1

∂f/∂z2
=

exp

(
2

(
π1 ln z1 + π2 ln z2+
π3 ln

( 1
2z1 + 1

2z2
) ))(

2π1
z1

+ π3
1
2 z1+ 1

2 z2

)
exp

(
2

(
π1 ln z1 + π2 ln z2+
π3 ln

( 1
2z1 + 1

2z2
) ))(

2π2
z2

+ π3
1
2 z1+ 1

2 z2

)
= 2π1/z1 + π3/

( 1
2z1 + 1

2z2
)

2π2/z2 + π3/
( 1

2z1 + 1
2z2

) = ∂ĉ2/∂z1

∂ĉ2/∂z2

and hence Condition (i) is satisfied. Second, if j = 1 or 2,

Dπ

(
∂f

∂c1
/

∂f/∂zj

∂ĉ2/∂zj

− ∂ĉ2

∂c1

)
= 0

and hence Condition (ii) holds. Third, if j = 1 or 2,

17 It should be noted that the period two certainty equivalent in eqn. (27) corresponds to the function (21) and is not 
based on the first stage portfolio optimization.
www.manaraa.com



20 F. Kubler et al. / Journal of Economic Theory 185 (2020) 104973
∂f/∂zj

∂ĉ2/∂zj

= 2 exp

(
π1 ln z1 + π2 ln z2 + π3 ln

(
1

2
z1 + 1

2
z2

))
>

1

f

(
∂f

∂c1
− ∂f/∂zj

∂ĉ2/∂zj

∂ĉ2

∂c1

)
= 0

and hence Condition (iii) is satisfied. Thus one can conclude that there exists a unique twice 
continuously differentiable, strictly increasing, strictly quasiconcave representation of time pref-
erences U (c1, ĉ2) rationalizing the certainty demand. Next we solve for U directly to verify 
our conclusion. Actually, it is easy to see that f̃ (c1, ĉ2) = ĉ2

2 and hence the partial differential 
equation (25) becomes

∂U

∂c1
− ĉ2

2
∂U

∂ĉ2
= 0.

Solving this partial differential equation yields

U (c1, ĉ2) = c1 − 1

ĉ2
, (28)

which is twice continuously differentiable, strictly increasing, strictly quasiconcave and prob-
ability independent. Thus the reason why the unconditional asset demands (18) - (19) that we 
started with in Example 3 are independent of income is the quasilinearity of the certainty utility, 
(28). Finally, since Vc1 (c2) = ln c2, which is a member of HARA class, 

(
U,Vc1

)
represents a 

KPS representation.

5. Revealed preference tests

Theorems 1 - 3 are fully consistent with the integrability analysis of Hurwicz and Uzawa
(1971) and Mas-Colell (1978) and give a theoretical answer to the question of observable re-
strictions imposed by the maximization of KPS utility. But what if in an applied setting one only 
has finite data rather than full demand functions, can revealed preference analysis be applied to 
address the weaker question of whether a finite number of observations on prices, demands, and 
possibly probabilities, are consistent with the maximization of KPS preferences? Along the lines 
of Mas-Colell (1978), one can extend the analysis by considering the case where the observations 
become dense (in an appropriate sense as defined in Mas-Colell (1978)) and can recover the KPS 
utility function. However, the purpose of section is to consider the case where the data is finite.

For our non-parametric analysis we need to derive Afriat inequalities (Afriat, 1967). These 
non-linear inequalities completely characterize choices which are consistent with utility maxi-
mization. Varian (1983) showed that in revealed preference analyses, the Afriat inequalities for 
asset demand can be used to test whether demand and price observations are consistent with the 
maximization of an EU representation in an incomplete market setting. Kubler (2004) derives 
the Afriat inequalities for asset demand under Kreps and Porteus (1978) utility for the case of 
risk preference independence. Unfortunately from a practical point of view his results are useless 
since the inequalities are nonlinear and he does not provide an efficient algorithm to solve them.

The Afriat inequalities can be efficiently solved if one can find equivalent, quantifier free 
conditions as in Kubler et al. (2014), or if they can be reduced to a system of linear inequalities. 
In the latter case, interior-point methods or the simplex methods can be used to solve systems 
even with a very large number of observations.

In Lemma 1 below, we propose a traditional revealed preference test based on a system of non-
linear inequalities. To make the computational process efficient, one solution would be to design 
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a lab experiment such that one can directly observe period two certainty equivalent consumption 
based on the subjects’ responses. Then the utility maximizing choices would be characterized by 
the computationally simpler linear system of inequalities if one assumes that the overall utility 
function is quasiconcave.

We start our analysis with a general characterization of rationalizable observations. It is 
helpful to use the budget constraint to transform asset demands directly into contingent claim 
demands as the latter are the objects that impose restrictions on our data set. We consider the 
general RPD case and assume that the NM index Vc1(c2s) is jointly concave in c1 and c2s .18

We assume throughout that consumption choices are interior. Moreover, the certainty equiva-
lent is not observable in the lab experiment and needs to fulfill certain conditions. Consider the 
case where there are N observations of prices and demands with i ∈ {1, ..., N}. For the following 
lemma and theorem below, we simplify notation by defining V i

0 , V i
s and ci

20, respectively to be the 
period two EU-value based on the ith observation of contingent claim demands, the utility-value 
Vci

1
(ci

2s), the certainty equivalent associated with the vector (ci
21, . . . , c

i
2S) and probabilities, π i . 

Ui denotes the two period certainty utility-value associated with the ith observation of period one 
consumption ci

1 and period two certainty equivalent ci
20. Also, we use the following definitions

ui
1 = U1(c

i
1, ĉ

i
2), ui

2 = U2(c
i
1, ĉ

i
2), vi

1s =
∂Vci

1
(ci

2s)

∂ci
1

, vi
2s =

∂Vci
1
(ci

2s)

∂ci
2s

, V i
s = Vci

1
(ci

2s).

We have the following lemma.

Lemma 1. The data set 
(
ci

1, ci
2,p

i
1,qi ,π i

)N

i=1 is consistent with maximization of the two period 
KPS utility (3) defined by a concave time preference utility U and the NM index 

{
Vc1

}
, that is 

jointly concave in first and second period consumption, if and only if for each i = 1, . . . , N there 
exist V i

s , vi
1s , v

i
2s > 0, s = 0, . . . , S, Ui, ui

1 > 0, ui
2 > 0, ci

20 > 0, i = 1, . . . , N , such that

(i) For all i = 1, . . . , N ,

qi

pi
1

(
ui

1 + ui
2

(
1

vi
20

S∑
s=1

πi
s v

i
1s + vi

10

vi
20

))
= ui

2
1

vi
20

S∑
s=1

πi
s ξ sv

i
2s;

(ii) For all i, j = 1, . . . , N , and all s, t = 0, . . . , S,

V i
s − V

j
t ≤

(
v

j
1t

v
j

2t

)
·
((

ci
1

ci
2s

)
−

(
c
j
1

c
j

2t

))
;

18 In principle, when making the two stage identification, one does not require Vc1 (c2s ) to be concave in c1. But for 
the revealed preference tests, it is standard for the Afriat concavity inequality to impose concavity restrictions for both 
arguments. One interesting example of KPS preferences that satisfies the joint concavity assumption is where the NM 
index Vc1 (c2s ) takes the following internal habit formation form analogous to the EU representation of Constantinides
(1990)

Vc1 (c2s ) = V (c2s − βc1) ,

where V ′′ < 0 and β > 0. In this case, if the Arrow-Pratt measure of absolute risk aversion 
−V ′′ (c2s − βc1) /V ′ (c2s − βc1) is decreasing in c2s then it will be increasing in c1. In other words, the more 
consumed in period one, the more risk averse the consumer becomes.
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For all i = 1, . . . , N

V i
0 =

S∑
s=1

πi
sV

i
s ;

(iii) For all i, j = 1, . . . , N

Ui − Uj ≤
(

u
j

1

u
j

2

)
·
((

ci
1

ci
20

)
−

(
c
j

1

c
j

20

))
;

(iv) For all i, j = 1, . . . , N

Ui − Uj ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u
j

1 + u
j

2

(
1

v
j
20

∑S
s=1 π

j
s v

j

1s + v
j
10

v
j
20

)
u

j
2

1
v

j
20

v
j
21

...

u
j

2
1

v
j
20

v
j

2S

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

ci
1

ci
21
...

ci
2S

⎞⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎝
c
j

1

c
j
21
...

c
j
2S

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ .

The revealed preference Conditions (i)–(iv) in the lemma roughly parallel the conditions in 
the infinitesimal Theorems 1, 2 and 3. Since we do not assume that conditional asset demand 
is observable (this would correspond to the special case where the ci

1 are identical across obser-
vations i), the conditions ensure both the existence of a risk averse conditional second period 
conditional NM index (in Condition (ii)) and the existence of a concave time preference utility 
(Condition (iii)). In addition since there is no simple analogue to Assumption 1 in this setting, we 
need to impose separately that overall utility is concave in first and second period consumption 
– Condition (iv) is therefore similar to the requirement in Theorem 3.

In the lemma we assume observations on demand, prices and probabilities. However unlike 
in our analysis in the infinitesimal case, it is irrelevant whether probabilities vary or not. If we 
consider the case where observations become dense, we clearly need to assume that probabilities 
vary in order to be able to recover preferences uniquely.

Clearly the inequalities in Lemma 1 are nonlinear and it seems unlikely that there is a tractable 
algorithm to solve them. One obstacle to the solution of the full system in Lemma 1 lies in the 
fact that the certainty equivalents (ci

20)
N
i=1 are unknown. It would seem possible, however, that in 

a lab experiment one might be able to solicit the certainty equivalents directly from the subjects. 
One way of doing this would be to assume that only a risk free asset is available for trade. Then 
each subject could be asked to specify the risk free asset price such that the subject is indifferent 
between purchasing the risky asset portfolio and the risk free asset.19 Then, observations would 
consist of consumption, asset demands, prices, certainty equivalents ci

20 and supporting risk free 

19 Suppose one is given the observation 
(
ci

1, ci
2,pi

1,qi ,π i
)

for a subject, then the individual could be asked to give 
the risk free asset price ̂qi

1 such that she is indifferent between purchasing the period 1 consumption and risky asset pair (
ci

1, ci
2,pi

1,qi ,π i
)

and the period 1 consumption and risk free asset pair 
(
ci

1, ci
20,pi

1, q̂i
1

)
, where

ci
20 = ci

2 · qi

q̂i
1

.
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asset prices q̂i
1 for all i = 1, . . . , N . Building on the two stage identification process employed 

in Theorems 1-3, we derive Theorem 4 (and Lemma 1 above). Condition (ii) of the theorem is 
associated with the first stage optimization with respect to Vc1 (c2s). Condition (iii) is associated 
with the second stage optimization with respect to U (c1, c2), where q̂1/p1 can be viewed as 
a pseudo price ratio corresponding to the first order condition in eqn. (A.9) in Appendix A.4. 
Conditions (i) and (iv) are associated with overall utility properties.

Theorem 4. The data set 
(
ci

1, ci
2, c

i
20,p

i
1,qi , q̂i

1,π
i
)N

i=1 is consistent with maximization of the 
two period KPS utility (3) defined by a concave time preference utility U and the NM index {
Vc1

}
, that is jointly concave in first and second period consumption, if and only if for each 

i = 1, . . . , N there exist V i
s , vi

1s , v
i
2s > 0, s = 0, . . . , S, Ui, ui

1 > 0, i = 1, . . . , N , such that

(i) For all i = 1, . . . , N ,

qi

pi
1

(
pi

1

q̂i
1

vi
20 +

S∑
s=1

πi
s v

i
1s + vi

10

)
=

S∑
s=1

πi
s ξ sv

i
2s;

(ii) For all i, j = 1, . . . , N , and all s, t = 0, . . . , S,

V i
s − V

j
t ≤

(
v

j
1t

v
j

2t

)
·
((

ci
1

ci
2s

)
−

(
c
j
1

c
j

2t

))
;

For all i = 1, . . . , N

V i
0 =

S∑
s=1

πi
sV

i
s ;

(iii) For all i, j = 1, . . . , N ,

Ui − Uj ≤
⎛⎝ u

j
1

u
j
1

q̂
j
1

p
j
1

⎞⎠ ·
((

ci
1

ci
20

)
−

(
c
j

1

c
j
20

))
;

(iv) For all i, j = 1, . . . , N ,

Ui − Uj ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
j
1 + u

j
1

q̂
j
1

p
j
1

(
1

v
j
20

∑S
s=1 π

j
s v

j
1s + v

j
10

v
j
20

)
u

j

1
q̂

j
1

p
j
1

1
v

j
20

v
j

21

...

u
j
1

q̂
j
1

p
j
1

1
v

j
20

v
j
2S

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

ci
1

ci
21
...

ci
2S

⎞⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎝
c
j
1

c
j

21
...

c
j

2S

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ .

The proof of Theorem 4 follows from the observation that for the certainty equivalents to be 
supported, we must have for all i = 1, . . . , N , ̂qi

1U
i
1/p

i
1 = Ui

2.
Theorem 4 Conditions (i), (ii) and (iii) can be written as a linear system of inequalities that 

can be solved efficiently using methods from numerical linear algebra. The additional system in 
Condition (iv) that ensures overall concavity unfortunately is nonlinear and it remains an open 
question as to how to verify it efficiently. Clearly Conditions (i)-(iii) are necessary conditions 
and they are sufficient if one assumes that overall utility is quasiconcave.
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6. Conclusion

In this paper, we give the necessary and sufficient integrability conditions such that asset 
demand functions can be rationalized by a KPS utility function in an incomplete market setting 
without requiring the existence of a risk free asset but assuming probabilities can be varied. 
Moreover, a means for recovering the corresponding KPS utility function is proposed if the above 
conditions hold. In order to implement tests of whether in a lab setting the demands of individual 
subjects are consistent with KPS preferences when markets are incomplete, the results cannot 
be applied directly. One can either resort to a revealed preference analysis (as is suggested in 
Section 5), or one can use our theoretical results to obtain asset demand systems. Unlike in the 
case of demand for commodities under certainty, no convenient functional forms are known for 
asset demand. Theorems 1-3 can be used in principle to develop such demand systems which 
then can be estimated from experimental data. This is a subject for further research.

A good deal of the existing lab results questioning EU maximization, at least of which we are 
aware, is based on lotteries. However in the evolving experimental research based on contingent 
claim (asset demand) non-parametric tests (e.g., Polisson et al., 2019), the case against EU seems 
less clear than the tests based on lotteries. Implementing our non-parametric tests based on asset 
demands rather than lotteries in an experimental setting such as (Choi et al., 2007) would seem 
to provide a useful addition to the existing literature. Finally, it would also seem quite interesting 
and potentially feasible to test whether consumers are less likely to exhibit conditional asset de-
mand behavior which is consistent with EU maximizing behavior in incomplete versus complete 
markets perhaps due to the extra complexity of more states than assets.

Appendix A. Proofs

A.1. Proof of Proposition 1

The optimal demand satisfies dU (c1, ĉ2 (c1)) /dc1 = 0, which implies that

∂U(c1 ,̂c2)
∂c1

∂U(c1 ,̂c2)
∂ĉ2

= −dĉ2

dc1
.

Moreover, we have

d2U (c1, ĉ2 (c1))

dc2
1

= d

dc1

(
∂U (c1, ĉ2 (c1))

∂c1
+ ∂U (c1, ĉ2 (c1))

∂ĉ2

dĉ2

dc1

)
= ∂2U (c1, ĉ2)

∂c2
1

+ 2
∂2U (c1, ĉ2)

∂c1∂ĉ2

dĉ2

dc1
+

∂2U (c1, ĉ2)

∂ĉ2
2

(
dĉ2

dc1

)2

+ ∂U (c1, ĉ2)

∂ĉ2

d2ĉ2

dc2
1

= ∂2U (c1, ĉ2)

∂c2
1

− 2
∂2U (c1, ĉ2)

∂c1∂ĉ2

∂U(c1 ,̂c2)
∂c1

∂U(c1 ,̂c2)
∂ĉ2

+

∂2U (c1, ĉ2)

∂ĉ2

(
∂U(c1 ,̂c2)

∂c1

∂U(c1 ,̂c2)

)2

+ ∂U (c1, ĉ2)

∂ĉ2

d2ĉ2

dc2 .
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Since U is strictly increasing and strictly quasiconcave, we have

2
∂2U

∂c1∂ĉ2

∂U

∂c1

∂U

∂ĉ2
−

(
∂U

∂c1

)2
∂2U

∂ĉ2
2

−
(

∂U

∂ĉ2

)2
∂2U

∂c2
1

> 0,

implying that

∂2U

∂c2
1

− 2
∂2U

∂c1∂ĉ2

∂U
∂c1
∂U
∂ĉ2

+ ∂2U

∂ĉ2
2

(
∂U
∂c1
∂U
∂ĉ2

)2

< 0.

Since d2ĉ2/dc2
1 < 0, we have

d2U (c1, ĉ2 (c1))

dc2
1

< 0.

Thus the second order condition is satisfied and the optimal demand maximizes the utility func-
tion U . Next we want to argue that if this solution always exists, then the KPS representation 
must be strictly quasiconcave. For the KPS representation U (c1, ĉ2), the local maximum/min-
imum can be always derived from the two stage optimization (6) - (7), where the first order 
conditions are satisfied. If U (c1, ĉ2) is not strictly quasiconcave, then there exists at least one 
local extremum which is not a local maximum and hence will violate the second order condition. 
This contradicts our argument above that the second order condition is always satisfied and hence 
U (c1, ĉ2) must be strictly quasiconcave.

A.2. Existence of conditional demands and inverse demands

The following lemma provides a sufficient condition for the existence of unique twice con-
tinuously differentiable conditional asset demand functions. It will prove useful to denote the 
Jacobian matrix of derivatives of the function (c1, I2) with respect to (p1, I ) as

Jc = ∂ (c1, I2)

∂ (p1, I )
. (A.1)

Since (c1, I2) can be viewed as a function of (p1, I,q,π), the nonsingularity of the Jacobian ma-
trix (A.1) ensures that the inverse function exists, i.e., (p1, I ) can be uniquely expressed as func-
tions of (c1, I2,q,π).20 Substituting these functions into the unconditional demand (z1, ..., zJ ), 
one obtains the conditional demand.

Lemma 2. For given twice continuously differentiable demands c1 (p1,q,π, I ) and z(p1, q,

π, I ), if (i) ∀(q, π) ∈ Q × �, c1 (p1,q,π, I ) and I2 (p1,q,π , I ) are proper maps with re-
spect to (p1, I )21 and (ii) ∀(p1, q, π, I ) ∈ P × Q × � × I , detJc �= 0, then ∀(p1, q, π, I ) ∈
P ×Q × � × I , there exists unique twice continuously differentiable conditional asset demand

zj (q,π, I2| c1) = zj (p1,q,π, I ) (j = 1, ..., J ) . (A.2)

20 The reason for including q and π as arguments in the inverse demand functions is to ensure that q and π will enter 
into the unconditional demand for assets (z1, ..., zJ ) as parameters.
21 A map between topological spaces is called proper if inverse images of compact subsets are compact. A special case 
which is more economically intuitive is desirability, i.e., when some price goes to zero, the corresponding demand goes 
to infinity.
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Proof. Consider the following equations

c1 = c1 (p1,q,π, I ) and I2 = I − p1c1 (p1,q,π, I ) . (A.3)

If ∀(p1, q, π, I ) ∈ P ×Q × � × I ,

det
∂ (c1, I2)

∂ (p1, I )
�= 0,

and the map (c1 (p1, I ) , I2 (p1, I )) is proper, then following Gordon (1972, Theorem B) and 
Wagstaff (1975, p. 524), (p1, I ) can be solved for as a unique twice continuously differentiable 
function of (c1,q,π, I2) from the set of equations (A.3). Substituting

p1 (c1,q,π, I2) and I (c1,q,π , I2)

into the unconditional asset demand zj (p1,q,π , I ) (j = 1, ..., J ), ∀(p1, q, π, I ) ∈ P × Q ×
� × I , one obtains the unique continuously differentiable conditional demand zj (q,π, I2| c1)

(j = 1, ..., J ). �

Condition (ii) ensures the local existence of conditional demand and Condition (i) guarantees 
that conditional demand exists globally.22

Remark 8. Under the assumptions made in Section 2, namely that the U and 
{
Vc1

}
defining KPS 

utility being, respectively, strictly increasing and strictly quasiconcave and strictly increasing and 
strictly concave, and overall KPS utility being quasi-concave in c1, c21, . . . , c2S then it is always 
possible to express the consumption-portfolio optimization in two stages and there will always 
be a unique conditional asset demand. Also, see the last paragraph in Appendix A.1.

Next we consider the existence of the inverse demand function which maps asset demand, 
probabilities and income into a supporting price vector. Denote the Jacobian matrix of derivatives 
of the vector function (c1, z) with respect to (p1,q) as

Ju = ∂ (c1, z1, ..., zJ )

∂ (p1, q1, ..., qJ )
.

Then the following ensures the global existence of unique inverse demand.

Lemma 3. Assume c1 (p1,q,π, I ) and z (p1,q,π , I ) are twice continuously differentiable over 
prices, probabilities and income. If (i) ∀(π, I ) ∈ � × I , c1 (p1,q,π, I ) and z (p1,q,π, I ) are 
proper maps with respect to (p1,q) and (ii) ∀(p1, q, π, I ) ∈ P × Q × � × I , detJu �= 0, then 
∀(p1, q, π, I ) ∈ P × Q × � × I , there exists unique twice continuously differentiable inverse 
demands p1 (c1, z,π, I ) and qj (c1, z,π , I ) (j = 1, ..., J ).

Proof. Consider the following set of equations

c1 = c1 (p1,q,π, I ) and z = z (p1,q,π, I ) . (A.4)

If ∀(p1, q, π, I ) ∈ P ×Q × � × I ,

22 Without condition (i), we cannot ensure that the conditional demands exist in the full domain of all (no arbitrage) 
prices and probabilities. Then our result becomes local and we cannot guarantee the uniqueness of conditional demand 
functions. A similar argument applies to the discussion for Lemma 3.
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det
∂ (c1, z1, ..., zJ )

∂ (p1, q1, ..., qJ )
�= 0,

and ∀(π, I ) ∈ � × I , c1 (p1,q,π, I ) and z (p1,q,π, I ) are proper maps with respect to (p1,q), 
then following Gordon (1972, Theorem B) and Wagstaff (1975, p. 524), (p1,q) can be solved for 
as a unique twice continuously differentiable function of (c1, z,π, I ) from the set of equations 
(A.4). �

Although Lemma 3 is stated in terms of the unconditional demands, one can prove that 
conditional asset demand, if it exists, inherits the properties (i) and (ii) as well as being twice con-
tinuous differentiability.23 Therefore, if the conditions in Lemma 3 are satisfied, the conditional 
demand is also globally invertible. If the preferences are represented by a twice continuously 
differentiable KPS utility function, then Lemmas 2 and 3 are automatically satisfied. First, the 
maps are clearly proper. Second, the conditional asset demand exists and is twice continuously 
differentiable. This implies that detJc �= 0 as in Lemma 2. Finally, it follows from the first order 
condition that inverse conditional asset demand also exists. Therefore, detJu �= 0 as in Lemma 3.

A.3. Proof of Theorem 1

To prove necessity observe that, using πS = 1 −∑S−1
s=1 πs and given the inverse demand func-

tion q(z, π, I2), differentiating

S∑
s=1

πsξjsV
′
c1

(c2s) = μqj ,

with respect to πs (s ∈ {1, ..., S − 1}), one obtains

ξjsV
′
c1

(c2s) − ξjSV ′
c1

(c2S) = ∂μ

∂πs

qj + ∂qj

∂πs

μ. (A.5)

Differentiating the budget constraint with respect to πs (s ∈ {1, ..., S − 1}), it follows that

J∑
j=1

∂qj

∂πs

zj = 0. (A.6)

Combining eqn. (A.5) with (A.6) yields

V ′
c1

(c2s) c2s − V ′
c1

(c2S) c2S = ∂μ

∂πs

J∑
j=1

qj zj = ∂μ

∂πs

.

Substituting the above equation into (A.5) one obtains

ξjsV
′
c1

(c2s) − ξjSV ′
c1

(c2S) = (V ′
c1

(c2s) c2s − V ′
c1

(c2S) c2S)
1

qj

+ ∂qj

∂πs

μ.

Defining

ρ2s = πsV
′
c1

(c2s)

μ
,

23 The inheritance of twice continuous differentiability is obvious. For a formal proof for the inheritance of properties 
(i) and (ii), refer to Kannai et al. (2017, Claims 2 and 3 in the proof of Theorem 3).
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we obtain
∂qj

∂πs

= (
ξjs − c2sqj

) ρ2s

πs

− (
ξjS − c2Sqj

) ρ2S

πS

(s = 1, ..., S − 1) . (A.7)

Using 
∑

s ρ2sc2s = 1 and 
∑

s ξjsρ2s = qj and summing over all s = 1, . . . , S − 1, it follows that

S−1∑
s=1

πs

∂qj

∂πs

= qj − ξjSρ2S − qj (1 − ρ2Sc2S) − (1 − πS)
(
ξjS − c2Sqj

) ρ2S

πS

or ρ2S as defined in equation (12). Substituting the above equation into (A.7) yields

∂qj

∂πs

= (
ξjs − c2sqj

) ρ2s

πs

+
S−1∑
l=1

πl

∂qj

∂πl

,

implying that

ρ2s =
πs

(
∂qj

∂πs
− ∑S−1

l=1 πl
∂qj

∂πl

)
ξjs − c2sqj

(s = 1, ..., S − 1) ,

as defined in equation (13).
Hence Ms,s′ denotes the marginal rate of substitution between consumption in s and con-

sumption in s′ and necessity of the three conditions in the theorem now follows directly. Condi-
tion (i) follows from the first order condition for optimality. Condition (ii) follows because utility 
is assumed to be separable across states and the NM index does not depend on probabilities. 
Condition (iii) follows from state independence and concavity of utility.

To prove sufficiency we prove that each ρ2s as defined in equation (12) and in equation (13)
can be written as the fraction of a continuous, positive valued and decreasing function that only 
depends on c2s (call that function πsVc1 ) and a continuous function that is the same for all 
s = 1, . . . S. This proves the result since Condition (i) in the theorem ensures that the first order 
conditions hold and Condition (iii) ensures that the utility is state independent. This also proves 
that the second part of the theorem, namely that utility can be uniquely recovered.

Since we assume that D is topologically connected, it follows that for each s = 2, . . . , S the 
set of consumptions

Cs = {(c21, c2s) ∈R2+ : ∃(z,π) ∈ D with c21 = ξ1 · z, c2s = ξ s · z}
is an open and connected set in R2+. Therefore it suffices to normalize V ′

c1
(̂c21) = 1 for some 

value of ̂c21 = ξ1 · ẑ that is in the projection of the set onto c21. From this, with the assumption 
of openness we can recover Vc1(c2s) locally by integrating Ms1(̂z + ζ δ) with respect to δ ∈ R
for any ζ ∈ RJ that satisfies ζ · ξ1 = 0, ζ · ξ s > 0. Since Cs is connected one can find a path of 
these integrals to obtain Vc1(c2s) for all c2s that are observed.

Condition (ii) in the theorem ensures that this function only depends on c2s and Condition 
(iii) ensures that it is concave and continuous.

A.4. Proof of Theorem 2

First prove necessity. If U exists, then it follows from the first order condition that

p1 (c1, z1, ..., zJ )

q1 (c1, z1, ..., zJ )
=

∂U
∂c1

+ ∂U
∂ĉ2

∂ĉ2
∂c1

∂U ∂ĉ2
= 1

∂ĉ2

∂U
∂c1
∂U

+
∂ĉ2
∂c1
∂ĉ2

, (A.8)
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implying that

∂U
∂c1
∂U
∂ĉ2

= ∂ĉ2

∂z1

(
p1 (c1, z1, ..., zJ )

q1 (c1, z1, ..., zJ )
−

∂ĉ2
∂c1
∂ĉ2
∂z1

)
, (A.9)

which is a continuously differentiable positive function of (c1, ĉ2). Define this function as 
f̃ (c1, ĉ2). First,

∂f/∂zi

∂f/∂zj

= ∂f̃ /∂ĉ2 · ∂ĉ2/∂zi

∂f̃ /∂ĉ2 · ∂ĉ2/∂zj

= ∂ĉ2/∂zi

∂ĉ2/∂zj

,

which is Condition (i). Second, f̃ (c1, ĉ2) is independent of probabilities, which is equivalent to

Dπ

(
∂f̃ /∂c1

∂f̃ /∂ĉ2

)
= 0. (A.10)

To convert the above condition to a condition based on f , notice that

∂f

∂zj

= ∂f̃

∂ĉ2

∂ĉ2

∂zj

and
∂f

∂c1
= ∂f̃

∂c1
+ ∂f̃

∂ĉ2

∂ĉ2

∂c1
. (A.11)

Therefore, eqn. (A.10) can be rewritten as

Dπ

(
∂f

∂c1
/

∂f/∂zj

∂ĉ2/∂zj

− ∂ĉ2

∂c1

)
= 0,

which is Condition (ii). Finally, it follows from Arrow and Enthoven (1961, p. 797 Theorem 5)
that the strict quasiconcavity of U is equivalent to detBH > 0, where BH is the bordered Hessian 
matrix

BH =
⎛⎝ 0 U1 U2

U1 U11 U12
U2 U12 U22

⎞⎠ .

It can be verified that

detBH = 2U1U2U12 − U2
2 U11 − U2

1 U22.

Moreover,

∂f̃ (c1, c2)

∂c2
= U12U2 − U1U22

U2
2

and

∂ ln f̃ (c1, c2)

∂c1
= ∂ (lnU1 − lnU2)

∂c1
= U11

U1
− U12

U2
.

Since U1, U2 > 0,

∂f̃ (c1, c2)

∂c2
>

∂ ln f̃ (c1, c2)

∂c1
(A.12)

is equivalent to

detBH = 2U1U2U12 − U2U11 − U2U22 > 0.
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Using eqn. (A.11), condition (A.12) can be transformed into

∂f/∂zj

∂ĉ2/∂zj

>
1

f

(
∂f

∂c1
− ∂f/∂zj

∂ĉ2/∂zj

∂ĉ2

∂c1

)
,

which is Condition (iii). Next prove sufficiency. Since ̂c2 is a twice continuously differentiable 
function of (z1, ..., zJ ) and

∂ĉ2/∂zj �= 0 (j = 1, ..., J ) ,

it follows from Mas-Colell (1977) that ĉ2 is a Lipschitzian and regular function. Consider the 
following set of partial differential equations

∂ĉ2/∂z1

∂ĉ2/∂zj

= gj (z1, ..., zJ ) (j = 2, ..., J ) , (A.13)

which define the shape of ̂c2 = const curves on the full (z1, ..., zJ ) space. Combining Theorems 
1 and 2 in Mas-Colell (1977), one can conclude that the solution to the set of partial differential 
equations (A.13) is T ◦ ĉ2, where T is a monotone transformation.24 Since f (c1, z1, ..., zJ ) also 
satisfies (A.13), we have

f (c1, z1, ..., zJ ) = f̃c1 (̂c2) = f̃ (c1, ĉ2) .

Since f̃ (c1, ĉ2) exists and is continuously differentiable, implying that the Lipschitz condition is 
satisfied, it follows from Schaeffer and Cain (2016, Theorems 3.2.2 and 3.3.4) that the ordinary 
differential equation

dĉ2

dc1
= −f̃ (c1, ĉ2) (A.14)

has a unique solution, which can be denoted by U (c1, ĉ2) = 0. Since eqn. (A.14) can be viewed 
as the characteristic equation of the following first order homogeneous linear partial differential 
equation

∂U

∂c1
− f̃ (c1, ĉ2)

∂U

∂ĉ2
= 0, (A.15)

and the ordinary differential equation (A.14) has a unique solution, it follows from Polyanin and 
Nazaikinskii (2016, pp. 1123-1124) that the partial differential equation (A.15) has a unique so-
lution T ◦ U (c1, ĉ2), where T is an increasing transformation. Since f̃ (c1, ĉ2) is a continuously 
differentiable positive function satisfying condition (A.12), U (c1, ĉ2) is twice continuously dif-
ferentiable, strictly increasing and strictly quasiconcave. Since condition (A.10) holds, f̃ (c1, ĉ2)

is independent of probabilities and hence U is also independent of probabilities. Moreover, it 
can be seen that the first order condition (A.8) is satisfied for this U (c1, ĉ2). Thus there ex-
ists a unique twice continuously differentiable, strictly increasing and strictly quasiconcave time 
preference representation U (c1, c2) : C1 × C2 → R rationalizing the certainty demand.

24 Mas-Colell does not argue directly that the partial differential equation (A.13) has a unique solution. Instead, he 
proves that the preference relation is unique when the preference is Lipschitzian. We apply his conclusion by viewing 
(A.13) as the marginal rate of substitution of the time preference utility. Then combining his Theorems 1 and 2 gives us 
the desired result.
www.manaraa.com



F. Kubler et al. / Journal of Economic Theory 185 (2020) 104973 31
A.5. Proof of Lemma 1

For necessity, suppose demand is rationalized by a KPS utility function. The necessary and 
sufficient first order conditions can be written as follows (for simplicity the superscript i is not 
included)

q
p1

(
U1(c1, ĉ2) + U2(c1, ĉ2)

∂ĉ2

∂c1

)

=U2(c1, ĉ2)
(
V −1

c1

)′
(

S∑
s=1

πsVc1(c2s)

)
S∑

s=1

πsξ sV
′
c1

(c2s),

where

∂ĉ2

∂c1
=

∂V −1
c1

(∑S
s=1 πsVc1(c2s)

)
∂c1

+
(
V −1

c1

)′
(

S∑
s=1

πsVc1(c2s)

)
S∑

s=1

πs

∂Vc1(c2s)

∂c1
.

Since (
V −1

c1

)′
(

S∑
s=1

πsVc1(c2s)

)
= 1

V ′
c1

(̂c2)

and

∂V −1
c1

(∑S
s=1 πsVc1(c2s)

)
∂c1

= ∂V −1
c1

(
Vc1 (̂c2)

)
∂c1

= −
(
V −1

c1

)′
(

S∑
s=1

πsVc1(c2s)

)
∂Vc1 (̂c2)

∂c1
,

the equations in Lemma 1 Condition (i) follow from the definitions of ui
1, ui

2, vi
1s and vi

2s , where 
vi

10 = −∂Vci
1
(̂ci

2)/∂ci
1. Conditions (ii) and (iii) follow from concavity of 

{
Vc1

}
and the concavity 

of U . Condition (iv) follows from the overall concavity of the KPS utility function.
For sufficiency, as in Afriat (1967), Conditions (ii) and (iii) allow us to construct piecewise lin-

ear and concave function Ũ(c1, ̂c2) and Ṽc1(c2). This implies a piecewise linear Ṽ −1
c1

, so overall 
utility is piecewise linear. It is concave if for all c1 and c2, the gradient inequalities in Condition 
(iv) are satisfied. However, since it is piecewise linear they must be satisfied everywhere if they 
are satisfied at all ci

1, c
i
2, i = 1, . . . , N .

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2019 .104973.
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